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Abstnd-The effect of reflected stress waves in a finite plate on the dynamic stress intensity factor of a
propapting mode III crack has been considered. Kostrov's analysis enables the effect of reftections from
one specimen boundary (the cracked surface) to be taken into account, but cannot be applied directly to
include reflections from the other (uncracked) surface. However, solutions may be obtained, if Kostrov's
analysis is used in a modified form and the stress waves reftected from the uncracked surface of the
specimen are treated separately as incident waves employing a related analysis due to Achenbach. The
method of solution has been applied to a simple example. In this case the effect of the arrival of the first
stress waves reflected from the uncracked surface is to cause a small gradual increase in the dynamic stress
intensity factor.

I. INTRODUCTION
One of the major difficulties in the solution of problems of dynamic crack propagation is the
effect of the reflection or diffraction of stress waves at the specimen boundaries or at the crack
tips. Kostrov's analysis[1] for the dynamic propagation of a mode III crack of finite length
enables the effect of the diffraction of stress waves at the opposite crack tip to be included in
the calculation of the stress ahead of the crack. Since in anti-plane strain a free surface reflects
the displacement field, this method of solution may also be applied to an edge crack and the
effect of reflections of stress waves at the cracked surface may be taken into account.
Examples of the application of Kostrov's method of solution are given in Refs. [2-7].

Of considerable practical interest, e.g. in a loss of coolant accident (LOCA) in a pressurized
water reactor (PWR) is whether the crack will propagate right through the' thickness of the
body, or whether it will arrest before this. Determination of the answer to this requires
knowledge of the effect of reflections from both surfaces of the body. Some insight into this
problem may be obtained by considering the anti-plane strain situation. In the work reported
here it is shown that by superposition of Kostrov's problem for dynamic crack propagation, and
a related problem considered by Achenbach[8-IO] see also [11] for the effect of incident stress
waves on a crack, it is possible to take into account the effect of the reflection of stress waves
from both surfaces of a specimen during the propagation of a mode III crack.

2. CRACK IN AN INFINITE SPECIMEN

The aim of this section is to review Kostrov's method of solution and to show why it cannot
be applied directly to the problem of a crack in a finite body, when reflections from both
surfaces must be taken into account.

The problem considered by Kostrov[l] is that of a crack of leqth 2a in an infinite plate.
The crack lies in the y =oplane, with its centre at x =0, and starts to propapte at time t =O. It
is convenient to work in the characteristic coordinates of the system.

1
71=\72{S+X)

1
f=\72(s-x)
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(2)
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Hg. I. Representation in the ,,-~ plane of the motion of an edge crack in a semi-infinite plate (Kostrov's
problem), showing the trajectories of the moving crack tip and the image of the crack tip.

as shown in Fig. 1, where s =ct where c is the velocity of shear waves. From Volterra's
theorem Kostrov[l] gives the change in displacement at some point P(xo, so) in the plane of the
crack (y =0) at time to as

(3)

where 7" is the change in the 7'yz stress from its initial value before the start of crack
propagation, J.L is the shear modulus and the area of integration is bounded by the lines

(xo-x)= ±(so-s) (4)

i.e. integration is over that part of the triangle APB of Fig. lover which there is a change in
stress. In terms of the characteristic coordinates this gives

(5)

where in general the lower limits of integration are -eo and -1/0, but the area of integration need
only include those parts of the 1/ - €plane where there is a change of stress. The diSplacement
is zero ahead of the crack, and thus provided P(1/0, eo) lies ahead of the crack tip, this integral
may be set equal to zeEO. In Kostrov's analysis this equation is further reduced to

(6)

The reason why this reduction may be made for the infinite plate system (although not given in
Kostrov's analysis is that the change in the displacement w'('1o, f) (as given by eqn 5) is zero
for all points P'( '10' f) for e':s; eo, i.e. for all points along the line PB of Fig. 1. This then
requires that the single integral of eqn (6) is equal to zero. However, if as in the case to be
considered here, the displacement is not zero for all points along the line PB, because this then
includes the reftected image of the crack, eqn (6) is no longer valid and Kostrov's analysis
cannot be applied directly.

In the case of an infinite plate the integral of eqn (6) may be split into two parts-that ahead
of the crack tip at 1/+W and that behind it, giving

(7)
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Kostrov has transformed this using Abel's integral to give the'change in the stress at some point
ahead of the crack tip as

(8)

In the limit of small distances ahead of the crack tip this gives the stress intensity factor as

(9)

where v is the instantaneous crack velocity. For short times, for 6< av'2 (where 2a is the
initial crack length) so that the line €=6 does not include the opposite crack tip, the result is
identical with that found independently by Eshelby[12], and 'T' ( 71, €o) may be identified with the
stress ahead of the crack tip prior to the start of crack propagation. For slightly longer times,
when €o> ov'2, this method of solution must first be applied to the opposite crack tip to
determine the change in stress ahead of this and repeated use of this technique is required as
the time increases and more reflections have to be taken into account.

3. CRACK PROPAGATION IN A FINITE SPECIMEN

In this section it is shown how Kostrov's method of solution may be extended to include the
effect of reflections from the uncracked surface ahead of the crack tip in addition to those from
the crack surface behind the crack tip. Burridge and Halliday[7] have used Kostrov's method of
solution to consider the interaction of an imbedded crack in a semi-infinite body with the
uncracked surface ahead of the crack tip. However, since reflections are considered only for
determining the stress after the crack has broken through to the surface, the problem, as far as
reflections are concerned is equivalent to that for an edge crack in a semi-infinite body. Here a
more general problem is considered.

A mode III edge crack of length a in a specimen of finite width w is shown schematically in
Fig. 2(a). Since the free surfaces act as reflectors, the problem is equivalent to an infinite planar
array of cracks of length 2a and periodicity 2w. The situation is shown in the 71- tplane in Fig.
2(b), where for convenience tbe origin has been moved to the uncracked surface and where

(a)

x

(b)

Fie. 2. Motion of an edae crack of initiallcnath II in a plate of finite width w. (a) Specimen aeometry. (b)
Representation in the .,,~{ plane.
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b =(w - a) is the length of the uncracked ligament. As before for a point P (Tlo, {G) ahead of the
crack tip, the change in the displacement is zero and thus the double integral of eqn (5) may be
set equal to zero. However, for ~o > b/Y2, not all points along the line 71 = 710 for ~ < ~o

correspond to positions where the change in displacement is zero, since parts of this line now
faU on the reflected images of the crack. Thus in this case the double integral of eqn (5) cannot
be reduced directly to the single integral of eqn (6). However, Kostrov's method of solution
may still be used provided the effects of the different stress waves are considered separately.
The wave system is shown schematically in Fig. 3. Initially there is only the wave emitted from
the propagating crack tip (Fig. 3a). This is then reflected at the specimen boundary so that there
is also the reflected wave (Fig. 3b). This reflected wave is then diffracted at the crack tip (Fig.
3c). The changes in stress due to these three waves may be treated separately to give the total
change in stress as

(10)

Here 7'1 is the change in stress due to waves emitted by the propagating crack, and is the result
given by eqn (8), i.e.

(II)

where 7j,(eo) describes the position of the (real) crack tip. This change is stress may be due just
to chanses in stress over the length of the crack, or it may already include the effect of stress
waves reflected at the cracked surface of the specimen, and calculated by repeated use of

of crock

(0)

(b)

(e)

Fig. 3. Effect of reftected and diffracted stress waves with increasing time.
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Kostrov's method. The second term "'2 in thechanp in stress is due to the reflection of this first
wave at the uncracked surface of the specimen. As with 'TI this may include the elect of
reftections at the cracked surface. This is calculated in the same way as 'TI, and is given by

(12)

where g('lo) describes the position of the image of the crack tip reflected in the uncracked
surface of the specimen. This second term 'T2 is non-singular at the (real) crack tip and does not
contribute directly to the stress intensity factor (see below). The third term .,.) is due to the
diffraction of this second (reflected) wave at the crack tip. Following Achenbach's solution[6-8]
for the diffraction of an incident wave by a crack, the .,.,% stress along the crack surface must be
zero, so that the elect of the ditfracted wave is to produce a stress to annul the stress "'2 that
would have been produced by the incident reflected wave along the crack surfaces. Thus the
ditfracted wave gives a stress

(13)

along the crack surfaces. The stress "'2C7I, to) is the stress that would be given by eqn (12) for a
point (71, to) behind the (real) crack tip. This then gives the third contribution to the cha. in
stress as

(14)

where following Achenbach's analysis for an incident wave[7, 8] the lower limit of integration is
given by

.,,* = b/V2, €o«2a +b)V2

.,,* =7I,Uo), €o> (2a +b)V2 (15)

(16)

where .",(fo) describes the position of the image of the crack tip reflected in the cracked surface
of the specimen. As in Achenbach's analysis the integration does not extend beyond the
position of the reflected image of the crack tip, since the diffracted wave does not annul the
stress due to the reftected wave outside this region. In the limit of smaIl distances ahead of the
crack tip these equations give the dynamic stress intensity factor as

Kd = (1- V/C)1/2 (1)112 [-1'" .,.'('17' Eo) d." +1'" "'a<'I7' to) d ]
'IT -to (,." - ,.,)112 fl. (.", - .,J}1I2 ."

where (1- v/C)112 is the velocity dependent term of eqn (9).
This superposition approach may be extended to enable a general expression to be written

to cover the effect of any number of reflections, although as in Kostrov's analysis repeated use
of the equations is required for the evaluation of the change in stress. As shown above, the
change in stress ahead of the crack tip at a point P( '10, to) is given by integrating along the lines
E=to and ,., ='10 (i.e. along the lines AP and AB of Fig. 2b), provided that the changes in stress
over the lenath of the crack (e.g. .,.* oe eqn 13) have already been calculated. In general, by direct
extension of Kostrov's and Achenbach's techniques to include the effect of the additional
reflections, the change in the stress ahead of the crack tip is then given by

(17)
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where 11,(~) and ~i(11) describe the motion of the crack tips or images of the crack tip to the left
and right of P(110, ~o) respectively (see Fig. 2b). To enable this to be evaluated, expressions are
also required for the changes in the stress along the crack and its images. There are two
contributions to this change in stress-that due to the unloading of the stress p(x) ahead of the
original crack and its images, and that which is required in Achenbach's analysis to annul the
stress due to incident waves. Thus on application of eqn (7) to evaluate the second type
of stress, this gives the change in stress for a point P'(11', f) on the crack or on the image of the
crack as

r'(l1', f) = - p(x)

1 J'lR r'(71, {')(nR -n)l/2
+17(11'-l1R)H2 (11'-11) dl1

1 Jfl r'(11', O({; - ~)1/2
+17({' - ~i)J/2 ({' _ e) de (18)

where x = (11- e>/v'2, and p(x) is the original stress ahead of the crack (images). The function
l1RW describes the motion of the right hand tip of the crack (image) to the left of the crack
(image) in question and €i(71) the motion of the left hand tip of the crack (image) to the right, as
is shown in Fig. 2(b). Repeated use of eqns (17) and (18) then enables the stress to be
determined for any number of reftections. In the case of an infinite or semi·infinite plate the
second integral of eqn (17) and both integrals of eqn (18) disappear, and the equations reduce to
those of Kostrov's original analysis.

4. EFFECT OF THE FIRST REFLECTED STRESS WAVE

The effect of the first stress wave reftected from the uncracked edge of the specimen and
diffracted from the crack tip may be taken into account in a fairly straight forward manner, as is
shown in the example presented here. In general the stress a distance u ahead of a crack in the
plane of the crack may be written as

(19)

where the first term determines the stress intensity factor. This stress need only be defined over
the length over which it is integrated to determine the dynamic stress intensity factor, i.e. over
the length the crack propagates. For simplicitly in the example taken here only the first two
terms in this stress will be considered. Further the velocity of crack propagation will be taken
as constant. It is also assumed that the initial crack extends a substantial distance across the
specimen so that for the first part of crack propagation only reftections from the uncracked
surface of the specimen and not those from the cracked surface need be considered. The
situation in the 11 - €plane is shown in Fig. 4. The motion of the crack tip is then described by

I
11M) =(1- vIc) [(I +vlc)€ - bv'2]

and the motion of its image reftected in the uncracked surface is described by

1
€i(l1) =(1- vIc) [(1 +V!c)l1- bv'2]

(20)

(21)

The effect of the different terms in p(u) for the stress ahead of the original crack tip may be
considered separately, so that in the first instance the situation considered (as in [6]) is that
where

1 Ao Ko
p(x) =(217)IJ2;;m =(217U)I/2 (22)
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Fig.4. Diagram for the calculation of the effect of the first stress waves reflected from the uncracked surface of
the specimen. PI-before the arrival of the reflected stress waves. Pr-after the arrival of the reflected stress

waves.

95\

where Ko is the original static stress intensity factor before the start of crack propagation. As
shown in[6], the stress intensity factor is then constant until the arrival at the crack tip of the
first reflected wave. The stress intensity factor then changes in response to the effect of the
reflected and diffracted waves and the effect of the diffracted wave may readily be seen.

Following Kostrov's analysis (see eqn 9) the stress intensity factor before the time of arrival
of the first reflected stress wave, i.e. before the time

is given by

(
2)112 f'lr K 1

Kd =(1- vlc)I/2 - cwm2)0 ( ,)In( )112 d,.,
'11' 'I' '11' ,., -,., ,.,,-,.,

(23)

(24)

where ,.,,(eo) is the instantaneous position of the crack tip (point PI of Fig. 4) and ,.,'Uo) is the
original position of the crack tip along the line e=eo, i.e. ,.,' =eo - bV2. Integration of eqn (24)
gives simply

(25)

Thus the stress intensity factor remains constant after the start of crack propagation until the
arrival of the first reflected stress wave at time 1=11' The stress ahead of the reflected image of
the crack tip is given from eqn (12) as

(26)

which gives

(27)

where (TIo, 6) and ("'0, f) are the present position and the original position of the reflected image
of the crack tip along the line,., ="'0' where e' ="'0- bV2. Thus for times 11 < 1< 12, where

b ( 2 )2
12 = C 1+vIc (28)
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is the time at which a stress wave emitted from the crack tip at the start of crack propagation
has been reflected at the specimen surface, diffracted at the crack tip, reflected again at the
uncracked surface and arrives at the crack tip, the stress intensity factor is given from eqn (16)
as

Kd =(1- vlc)"2 (~)"2 (2~)H2{f' (71-71')H2
1
(71, -71)1/2 d71

+f~2 [[~o - ~i( 71 »)!/2( 71, - 71)112 [~o - f( 71 »):/2( 71, - 71 )112] d71 }

where 71,(~o) is the instantaneous position of the crack tip (point P2 on Fig. 4), and

(
I +13) bV2

~i( 71) = 1- 13 71 - (1 - 13)

f(71) =71- bV2

(29)

(30)

(31)

where (3 =vi c. Substitution for these values for ~i( 71) and f( 71) in eqn (29) and integration then
gives the stress intensity factor as

This is shown as a function of time in Fig. 5(a) and as a function of the instantaneous crack
position in Fig. 5(b). The short vertical lines show the time of arrival of the first reflected stress
waves, and the stress intensity factor is shown for times up to t2• These figures show that the
stress intensity factor starts to increase gradually after the arrival at the crack tip of the first
stress wave reflected from the uncracked surface of the specimen. However, the increase in the
stress intensity factor is not great.

The same technique is used to calculate the effect of other contributions to p(u) on the
dynamic stress intensity factor. Applying this to the next order term

(33)

this gives the contribution to the dynamic stress intensity factor for times before the arrival of
the first reflected wave, i.e. for times less than t h as

K I 1/2A vtd=(1-VC) 1M

and the contribution to the stress ahead of the reflected image of the crack tip as

(34)

(35)

where ~i(71) and f(71) are given in eqns (30) and (31). Likewise the contribution to the dynamic
stress intensity factor for times between t1 and t2 is given by
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Fig. S. (a) Variationofdynamic stress intensity factor with timeafter the startof crack propaptionfor the
different crack velocities vic shown. (b) Variation ofdynamic stress intensity factor with position of crack

tip for the different crack velocities vIc shown.

2 [ [4b - 2ps ]112 ]}
-;: (4b - 213$) In [(1- IJ)s +2W12 - [(1 +IJ)s - 2b ]1/2 (36)

The dynamic stress intensity factor for a particular form of p(ll) is then found by substituting
for the appropriate values of Ko and AI and adding the contn"butions from eqns (25) and (34)
and eqns (32) and (36). The effect of the first reftections for both contributions to the dynamic
stress intensity factor is shown in Fig. 6. where the dynamic stress intensity factor is given in
the form

(37)
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Fig.6. Effect of the first reftected stress wave on the dynamic stress intensity factor for the different values
of vIe shown. The dynamic stress intensity factors are liven inthe normalized forms of eqns (37) and (38) so
that kl (full lines) and k2 (dashed lines) live the contributions from the u- l12 and u+ l12 terms for the stress

ahead of the original crack tip respectively.

for the controbution from the u- l12 term in p(u) and in the form

(38)

for the U+
1I2 term. In this way the curves show the percentage change in the dynamic stress

intensity factor due to the arrival of the reflected wave, compared with the result (k1 =1, k2 =1)
that would be obtained in the absence of the reflections. Both the contributions give a similar
small increase in the dynamic stress intensity factor after the arrival of the reflected wave, the
percentage change for the U+ I12 term in p(u) being smaller than that for the u- l12 term except
for crack velocities very close to the velocity c of the shear waves. Thus in general, unless the
dynamic stress intensity factor were to become negative, the arrival of the first stress wave
reflected from the uncracked surface of the specimen will be accompanied by a small gradual
increase in the dynamic stress intensity factor.

As is shown in Figs. S(b) and 6, even for quite moderate crack velocities (i.e. vic 2: 0.2) these
solutions are valid for crack propagation across a substantial proportion of remaining width of
the specimen that was not cracked before the start of dynamic crack propagation. The solution
may be extended by calculating the effect of subsequent stress wave reflections.

5. CONCLUSIONS

1. Kostrov's analysis[l] for the effect of reflected stress waves on the dynamic stress
intensity factor for a propapting mode III crack cannot be applied directly to a crack in a finite
specimen. where stress ,waves are reftectedfrom the uncracked surface of the specimen.

2. Solutions to the problem of crllCk propagation in a finite specimen may be obtained
through modified use of Kostrov's analysis by considering the effect of the stress waves
reflected from the uncracked surface separately and treating these as incident waves, following
a related analysis due to Achenbach[8-10).

3. In this way solutions may in principle be obtained for any time after the start of crack
propagation, although as in any analysis of the Kostrov type the integrals become increasingly
complicated as the number of reflections increases.
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4. The method of solution has been illustrated by a simple example, in which it is shown
that the arrival of the first reflected stress waves from the uncracked surface cause a small
gradual increase in the dynamic stress intensity factor.
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